KATEDRA ELEKTRONIKI AGH

LABORATORIUM ELEMENTY ELEKTRONICZNE

Ploter I-V instrukcja obsługi

Opracowali: Grzegorz Gajoch & Piotr Rzeszut

REV. 1.0

1. OPIS PROGRAMU

Ploter I-V służy do zbierania charakterystyk prądowo napięciowych przy użyciu zestawu NI ELVIS II. Program steruje źródłami napięciowymi VPS (Variable Power Supplies), (opcjonalnie¹ wyjście FGEN wykorzystywane jest jako trzecie źródło napięciowe z zakresem napięć -5V÷5V) oraz dokonuje pomiaru prądu z wykorzystaniem DMM (Digital Multimeter). Na podstawie tych danych rysowane są odpowiednie wykresy, zebrane dane można wyeksportować do pliku tekstowego w celu dalszej analizy.

2. OKNO GŁÓWNE

Rys. 1. Okno główne programu IV3

3. KONFIGURACJA SPRZĘTU

Źródła napięciowe sterowane przez program dostępne są na płytce prototypowej zestawu NI ELVIS II, natomiast pomiar prądu wykonywany jest z wykorzystaniem złącz "bananowych" po lewej stronie urządzenia. Układ wyprowadzeń przedstawia Rys. 2.

- Pomiar prądu: zaciski COM i A (odpowiednio biegun ujemny i dodatni amperomierza)
- Źródło VPS+: pin 48 (masa na pinie 49)
- Źródło VPS-: pin 50 (masa na pinie 49)
- Źródło FGEN: pin 33 (masa na pinie 49)

¹ Funkcja ta dostępna jest w wersji IV3

Rys. 2. Wyprowadzenia wykorzystywane przez program

4. PRACA Z PROGRAMEM

Po podłączeniu układu zgodnie z instrukcją ćwiczenia i uruchomieniu wskazanego oprogramowania należy dokonać jego konfiguracji oraz ustawić parametry pomiaru.

4.1. Device parameters

W tym polu należy wybrać w polu *Device name* nazwę pod jaką w systemie jest widoczny zestaw NI ELVIS II. Zwykle po jego rozwinięciu pojawia się tylko jedna pozycja typu *Dev1*, *Dev2* itp. oraz pole *Browse…*. Wybieramy odpowiednią opcję *DevX*.

W polu *Delay [ms]* podajemy opóźnienie pomiędzy ustawieniem napięcia a wykonaniem pomiaru prądu w milisekundach. Opcję tę ustawiamy w zależności od polecenia prowadzącego – będzie od niej zależała także szybkość pomiaru.

Rys. 3. Device parameters

4.2. Measurement control

W tym polu wybieramy źródło napięciowe, którego wartość będzie zmieniała się w czasie pomiaru (*Measurement type*) – będzie ona umieszczana na osi x wykresu.

Przyciski *START, BREAK, EXIT* pozwalają odpowiednio na rozpoczęcie pomiaru (przed tym jednak musimy wybrać jego parametry, co zostało opisane w dalszej części instrukcji), jego przerwanie (np. w przypadku, gdy zauważymy błędne połączenie, by nie czekać na zakończenie procesu) i zamknięcie programu.

	Measurement control	
Mea	surement type	
VPS	- sweep	
Measu	ement progress	
Idle		
		_
	START	
	BREAK	
	FXIT	

Rys. 4. Measurement Control

4.3. VPS+ parameters, VPS- parameters

W tych polach konfigurujemy parametry odpowiednich źródeł zasilania. W zależności od wybranego we wcześniejszym kroku źródła zasilania odpowiednie pola będą aktywne. W zależności od źródła mamy możliwość operowania napięciami z zakresu 0÷12V lub 0÷-12V

- Start [V] napięcie od jakiego rozpocznie się pomiar
- End [V] napięcie na którym zakończy się pomiar
- Steps ilość kroków między napięciem początkowym i końcowym
- VPS bias [V] napięcie jakie ma zostać ustawione na źródle, którego wartość będzie stała w czasie trwania pomiaru

Rys. 5. VPS+ parameters, VPS- parameters

4.4. FGEN bias

W programie IV3 mamy możliwość ustawienia napięcia podawanego na pin FGEN, które jest stałe w czasie trwania pomiaru. Napięcie możemy ustawiać w zakresie -5V÷5V

FGEN bias	
Bias [V]	
- 0	

Rys. 6. FGEN bias

4.5. Uruchomienie pomiaru

Po ustawieniu powyższych parametrów możemy rozpocząć pomiar klikając przycisk *START*. W polu *Measurement progres* wyświetlać się będą informacje o postępie pomiaru. W czasie trwania pomiaru niektóre przyciski stają się nieaktywne, także wszelkie zmiany parametrów nie będą brane pod uwagę do czasu uruchomienia kolejnego pomiaru.

4.6. Measurements

W tym polu pojawiać się będzie lista wykonanych dotychczas pomiarów. Każdy pomiar możemy wybrać klikając na jego numer – wybrany pomiar będzie wyświetlany w oknie wykresu pogrubioną linią. Podwójne kliknięcie spowoduje ukrycie pomiaru. Kliknięcie na *Delete selected* spowoduje usunięcie aktualnie podświetlonego pomiaru. Opcja *Export selected* pozwala na wyeksportowanie wyświetlanych na wykresie pomiarów do plików tekstowych. Operacja ta została opisana poniżej w osobnej sekcji.

No.	Parameters		*
			-
-			-
			-
	-		
			-
_			*
		Double click to hi	de/sho

Rys. 7. Measurements

4.7. Measurement graph

W tym polu wyświetlać będą się wykresy przeprowadzonych pomiarów, zgodnie z ustawieniami na liście pomiarów.

Rys. 8. Measurement graph

4.8. Eksport pomiarów

Po wybraniu przycisku Export selected pojawi się okienko wyboru FOLDERU.

Irganizuj 🔻 Nowy folder	8== -	E	0
 Vlubione Ostatnie miejsca Pobrane Pulpit Biblioteki Dokumenty Muzyka Obrazy Wideo Grupa domowa 	Data modyfikacji Żadne elementy nie pasują do kryteriów wyszukiwania.	Тур	
Vomputer	m		

Rys. 8. Export measurement...

Tu najpierw klikamy na *Nowy folder* i tworzymy katalog na nasze pomiary, następnie przechodzimy do tego folderu (w przykładzie *EEgraphs*) i klikamy na *Current Folder*. Po tej operacji w folderze pojawią się pliki tekstowe z danymi każdego z pomiarów, **które były** widoczne na wykresie i oznaczone znakiem "fajeczki" na liście.

UWAGA! Koniecznie sprawdź, czy odpowiednie dane zostały zapisane, zanim zamkniesz program.