Laboratorium Projektowania Systemów Scalonych

Katedra Elektroniki Akademia Górniczo-Hutnicza w Krakowie

Projektowanie układów VLSI-ASIC techniką od *szczegółu do ogółu (bottom-up)* przy użyciu pakietu CADENCE w technologii UMC 0.18µm *schemat i symulacja*

cd projekt_IC

1. Instrukcje wstępne

Po zalogowaniu się w systemie przejdź do katalogu, w którym będzie znajdował się projekt (nie zaleca się uruchamiania programu w katalog domowym użytkownika).

- Utwórz nowy katalog np.: projekt_IC: mkdir projekt_IC
- Wejdź do utworzonego katalogu:

Przed pierwszym uruchomieniem:

• Przygotuj środowisko pracy programu Cadence: umc_180_setup

Uwaga! <u>Użyj tej komendy tylko raz</u> w nowym katalogu.

• Uruchom program Cadence: virtuoso &

Po uruchomieniu pojawi się główne okno programu – Virtuoso:

<u>File Tools Options H</u> elp	cādence
Virtuoso Framework License (111) was checked out successfully. Total checkout time was 0.06s.	
I mouse L: M:	R:

W tym oknie można wprowadzać komendy z klawiatury (dolna linia) oraz pojawiają się różne komunikaty. Szczególnie istotne są te o błędach. Gdy podczas dalszej pracy program "nie odpowiada" należy sprawdzić, czy są jakieś informacje w tym oknie.

Program virtuoso należy zamykać używając komendy Exit z menu File.

C Vit	tuoso® 6.1.7	
File Tools Options Help		
New •	1) was checked	
<u>O</u> pen		
[mport)	UROPRACTICE DE	
Export •		
Refresh		
Make Read Only		
- <u>B</u> ookmarks		
🖷 <u>1</u> tranzystor nmos schematic		🔲 Exit virtuoso? 🛛
# 2 tranzystor inw_min schematic		
🖷 <u>3</u> tranzystor prnos schematic		OK to exit virtuoso?
📜 4 biblioteka inverterB layout		\sim
<u>C</u> lose Data		Ves No Help
Exit		

Z menu Tools należy wybrać Library Manager aby otworzyć okno menedżera bibliotek.

Okno to służy do przeglądania, edycji oraz tworzenia nowych bibliotek. W każdej bibliotece elementami są komórki (**Cell**), które mogą mieć różne widoki (**View**), np. schematic, layout itp.

Tak wygląda okno Library Managera:

Library	Manager: WorkArea: /home/staff/irek/IC/pro	ekt_IC _ 💷
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Manager <u>H</u> elp		cādenc
Show Categories Show Files		View
Messages Log file is "/home/staff/irek/IC/projekt_IC/libMa	nager.log".	

2. Przygotowanie nowego projektu

Aby utworzyć nową bibliotekę projektu należy w Library Manager z menu File wybrać New a potem Library.

Library	ojekt_IC _ 🗉 ×			
<u>Eile E</u> dit <u>V</u> iew <u>D</u> esign M	Manager	<u>H</u> elp		cādence
New Open Open (<u>R</u> ead-Only)	Ctrl+O Ctrl+R	Library <u>C</u> ell View C <u>a</u> tegory	Vie	w
Load Defaults Save Defaults				
Open Shell Window	Ctrl+P			
E <u>x</u> it	Ctrl+X			

W okienku Name wpisujemy nazwę nowej biblioteki, np. INWERTER

	New Library
Library	
Name	INWERTER
Directory	🔄 /home/staff/irek/IC/projekt_IC/ 🛛 🗢 🗈 📸 🏢 🗊
Cds.lib display lib.def libMar) y.drf sager.log nager.log.cdsick
File <u>t</u> ype:	Directories
Design Ma	anager
🖲 Use N	ONE
🔾 Use N	o DM
ОК	Apply Cancel Hel

Wybieramy opcję dowiązania tej biblioteki do istniejącej technologii

Następnie spośród istniejących plików technologicznych wybieramy UMC_18_CMOS

Attach Library to Technology Library										
New Library	INWERTER									
Technology Library	UMC_18_CMOS analogLib avTech basic cdsDefTechLib									
	OK Cancel Apply Help									

Biblioteka zawiera komórki. Aby utworzyć nową np. inw w bibliotece INWERTER, wybieramy widok schematu (schematic):

Otworzy się nowe okno schematu (schematic):

20	Virtuoso® Schematic Editor L Editing: INWERTER inw schematic																																	
Laur	nch <u>F</u> ile	<u>E</u> di	t ⊻i	ew <u>(</u>	reate	Che	ec <u>k</u>	Opt	ions	<u>W</u> inc	wot	UMC	Utils	<u>H</u> el	р																	c	ā d e	nce
		<u> </u>		¢\$;	C			×	1	T∕∕	\$	¢	18	•	T	Ē	- 3	ş.				Q [R	망	1	1	al	bc	Ð					
	- 🔘 -	- 6		3	Basio					- 5	1	3	•	<u>ک</u> ات	143	-0	3 T	3 [2	Q	Searc	h			3 -									
Na	vigator	?(Ð×																															
	inw																																	
▼ OB	JECTS																																	
All	lances		► 4 ►																															
Net	s		4 ⊳	Ľ																														
Pin	s		2 🕨	·																														
Net	s and Pins		•	•																														
Cel	s		►	•																														· ·
Тур	es		►																															
+ -	-																																	
Pro	pert	?	Ð×																															
				Ľ																														
				Ľ																														
				•																														
\leq			\geq										-					-											-					
IIImou	use L: schSi	ingle	Selec	tPt()												M: ge	Scroll	(nil "r	n" nil)												R: sch	h HiM	ou se P	opUp()
1(2)	>																															0	.md: S	iel: 0 📗

Na górze tego okna znajduje się menu programu, oraz przyciski do najczęściej używanych poleceń. Większość komend można też wywołać za pomocą skrótów klawiszowych.

3. Rysowanie schematu na przykładzie inwertera.

Teraz możemy już rysować schemat naszego układu. Aby dodać symbol elementu do schematu należy z menu **Create** wybrać **Instance** (skrót klawiaturowy – "**i**")

Pojawi się okienko wyboru celi z odpowiedniej biblioteki. Nazwy można wpisać w odpowiednie pola lub skorzystać z przycisku **Browse**.

	Add Instance
Library	UMC_18_CMOS
Cell	
View	
Names	
🗹 Add W	īre Stubs at:
	all terminals e registered terminals only
Array	Rows 1 Columns 1
	🚯 Rotate 🛛 🕼 Sideways 🛛 🚭 Upside Down
	Hide Cancel Defaults Help

Z biblioteki UMC_18_CMOS wybieramy czterokońcówkowy symbol tranzystora typu n (N_18_MM):

Otworzy się okno edycji parametrów tranzystora, gdzie można wprowadzić np. jego wymiary (**Total Width** i **Length**):

	Ado	l Instance	×				
Library	UMC_18_CMOS		Browse				
Cell	N_18_MM						
View	symbol						
Names							
🗹 Add Wir	e Stubs at:						
	🔾 all terminals 🧕	egistered terminals	only 🛄				
Array	Rows	1 Columns	1				
	🖹 Rotate 🛛 🕼	Sideways 🛛 🚄 Ups	ide Down				
Model Na	me	n 18 mm					
Total Widt	h	240.0n M					
Finger Wi	dth	240.0n M					
Length		180.0n M					
Finger Nu	mber	1					
- mis_flag		1					
Source Dr	ain Metal Width	400.0n M					
AD AS PE) PS Editable						
Drain diffu	sion area (m^2)	2.224e-13					
Source dif	fusion area (m^2)	2.224e-13					
Drain diffu	sion periphery	2.0u M					
Source dif	fusion periphery	2.0u M					
Multiplier		1					
		Hide Cancel De	efaults Help				

Analogicznie postępujemy z tranzystorem typu p (P_18_MM).

Pozostaje nam jeszcze dodać piny wejściowe i wyjściowe (z menu **Create** wybieramy **pin**, albo skrót klawiaturowy – "**p**"). Pojawia się okno, w którym wpisujemy nazwy potrzebnych pinów. Wejście **IN** powinno być typu **Input**, wyjście **OUT** powinno być typu **Output**, natomiast zasilanie i masę tworzymy przez dodanie elementów (Create Instance) **vdd** i **gnd** z biblioteki **analogLib**:

Cr Cr	eate Pin 🛛 🗙
Names 🗍	[N
Direction in	nput 🔽
Usage s	chematic 🔽
Signal Type s	ignal 🔽
	Expand busses
	Place multiple pins
Net Expression	Attach to pin
Supply Sensitivity	
Rotation	
Hide	Cancel Defaults Help

W ten sposób mamy już potrzebne elementy i musimy je ze sobą połączyć. W tym celu wybieramy **Create** \rightarrow **Wire** lub "**w**" z klawiatury i łączymy elementy. Gotowy układ jest pokazany poniżej:

Po narysowaniu schematu należy koniecznie go sprawdzić i zapisać komendą Check and save z menu File:

Następnie dla naszego inwertera tworzymy **symbol**, który będzie odzwierciedlał schemat i może być użyty w innych schematach. Program Cadence pozwala na stosowanie hierarchii. W tym celu klikamy w menu na **Create**. Następnie **Cellview** i **From Celview...**

Pojawia się okno, w którym należy skontrolować domyślnie wpisane wartości (z widoku **schematic** tworzony będzie widok **symbol**) i nacisnąć **OK**:

-	Cellview From Cellview	×
Library Name	INWERTER	Browse
Cell Name	inw	
From View Name To View Name	schematic 💌	
Tool / Data Type	schematicSymbol 💌	
Display Cellview	✓	
Edit Options	⊻	
	OK Cancel Defaults	Apply Help

Otworzy się kolejne okno, w którym możemy zmienić położenie pinów:

	Syn	bol Gene	ration Option	s	×
Library Name		Cell Name inw		View Name symbol	
Pin Specificatio	ons				Attributes
Left Pins	IN				List
Right Pins	OUT				List
Top Pins					List
Bottom Pins					List
Exclude Inherit	ed Connection Pins				
🖲 None 🔾	All 🔾 Only these	:]
Load/Save 🗌	Edit Attribu	utes 🗌	Edit Labels 📃	Edit Proper	rties 📃
			ОК	Cancel Apply	Help

Po wykonaniu tych czynności otworzy się okno edycji symbolu wraz ze wszystkimi wyprowadzeniami na zewnątrz (z wyjątkiem pinów globalnych zdefiniowanych przez elementy **vdd** i **gnd**):

S-	Vi	irtuos	o® Sy	mbo	l Edi	tor L	Editir	ing: INWERTER inw symbol					_ = ×						
Launch Eile Edit ⊻iew ⊆	2re ate	Chec <u>k</u>	Optior	ns <u>W</u> i	ndow	<u>H</u> elp						cādence							
🗅 🗁 🛃 🗔 🚸	Ø		K ()	Ţ	e9	\$	¢т	ŤŤ		Q		8	k	þ					
	/orkspa	ce: Ba	sic			-	-	-	ABC A	•) 🖧	\bigcirc	1	6	-				
Navigator 78×																			
🍸 Default 🔤																			
🔍 Search 🔽 🔻																			
Name 🗠																			
												Г <i>(</i> Б		- t -		NL.		-1	
												L C	ente	sta.	nce	SIN (ILLI	еı	
	1	-				[@	par	tNo	ame					•					
Property Editor ? & ×	1.																		
	1																		
	<u>-</u>													1				1	
i≡mouse L:							M	:											R:
2(3) Create Line																	Cn	nd: Se	l: 0 📗

Ten symbol można edytować, podobnie jak schemat, zmieniając kształt elementu. Uzyskując efekt np. jak poniżej.

W menedżerze bibliotek w komórce inwertera pojawi się widok symbol:

Library Ma	anager: WorkArea: /home/staff/kocanda/projekt_IC	_ = ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Manager <u>H</u> elp		cādence
Show Categories Show Files	Cell inw inw	View Schematic 30k symbol Name: INWERTER/inw/symbol Size: 22620
Messages Log file is "/home/staff/kocanda/projekt_IC/libManager.log". Created new library "INWERTER" at /home/staff/kocanda/projekt_IC/	NWERTER.	

W komórce **inw** mamy już schemat projektowanego inwertera oraz odpowiadający mu symbol. Teraz korzystając z hierarchii możemy przejść do sprawdzenia poprawności jego działania. Do tego celu należy przygotować schemat do symulacji ze źródłami zasilającym i sterującym oraz obciążeniem układu – stosowne warunki symulacji.

Tworzymy nową celę **schematic** o nazwie np. **inw_tb**, w której umieści się schemat układu do symulacji. Widok ten – **inw_tb** – można umieścić w tej samej (INWERTER) lub nowej bibliotece.

Do tego schematu dodajemy wszystkie potrzebne elementy – ich symbole. Dodając inwerter należy wybrać **symbol** inwertera z naszej biblioteki. Kolejne elementy dodajemy z biblioteki **analogLib**, tj.: źródło zasilania **vdc**, źródło impulsowe **vpulse**, obciążenie w postaci kondensatora **cap** oraz symbole zasilania **vdd** i masy **gnd**. Przy dodawaniu tych elementów otwierają się okna dialogowe, w których należy określić odpowiednie wartości napięć i czasów oraz wartość pojemności kondensatora.

Dodanie przykładowego elementu vdc (źródło napięcia stałego) z biblioteki analogLib:

	Ad	d Instance		×
Library	analogLib		Browse	
Cell	vdc			
View	symbol			
Names			aanen (renzi) ja huulõi	
🗹 Add Wir	re Stubs at:			
	🔾 all terminals 🤅	registered terminals	only	≣
Array	Rows	1 Columns	1	
	💫 Rotate 🔰 👍	Sideways 🛛 🔫 Ups	ide Down	
Noise file	name			
Number o	f noise/freq pairs	0		
DC voltag	e	1.8 ¥		
AC magni	tude			
AC phase				
1				
	-	Hide Cancel De	efaults He	_ al

Następnie łączymy odpowiednio wszystkie elementy. Można nadać nazwy połączeniom przez dodanie etykiet za pomocą polecenia **Wire name** z menu **Add** ("**l**" litera małe "el"). Stosowanie etykiet upraszcza schemat.

	Add V	Vire Name	×
Wire Name	Net Expression		A
Names	IN		
Font Height	0.0625	Bus Expansion	🖲 off 🥥 on
Font Style	stick	Placement	🖲 single 🔾 multiple
Justification	lowerCenter	Purpose	🖲 label 🔾 alias
Entry Style	fixed offset 🔽	Bundle Display	🖲 horizontal 🔘 vertical
		Sh	ow Offset Defaults
AL Rotate			
		Hide Ca	ncel Defaults Help

W linii **Names** można wpisać kilka etykiet oddzielonych spacjami i następnie kolejno kłaść je na połączeniach.

Schemat układu sprawdzającego działanie naszego inwertera.

Po narysowaniu koniecznie: File \rightarrow Check and save

Jeśli sprawdzenie przebiegło pozytywnie i nie ma błędów można przejść do symulacji układu. W przypadku błędów, są one zaznaczane na schemacie żółtymi kwadratami oraz są opisywane w głównym oknie programu. Koniecznie proszę sprawdzić "co program do nas pisze :) ".

4. Symulacja inwertera

Z okna schematu, który narysowaliśmy w celu wykonania symulacji otwieramy środowisko do symulacji. Z menu **Launch** poleceniem **ADE L** uruchamiające okno sterujące symulacjami:

🐒 🛛 Virtuoso® Analog Desig	n Environment (1) - INWERTER inw_tb schematiq_ 💷 🗆 🗙	
Launch S <u>e</u> ssion Set <u>u</u> p <u>A</u> nalyses	<u>Variables</u> <u>Outputs</u> <u>Simulation</u> <u>Results</u> <u>Tools</u> <u>Help</u>	
🛚 🚰 🧽 🦵 27 🛛 👌 🎾	🖀 🗹 📂	
Design Variables	Analyses ?	Rodzaj symulacji
Name Value	1 tran	Wybór sygnałów do wyświetlenia
		Rozpoczęcie analizy
	Name/Signal/Expr Value Plot Save Save Options 1 IN ☑ □ allv 2 OUT ☑ □ allv	Wyświetlanie wyników
> Select on Schematic Outputs to Be F	Plot after simulation: Auto 🔽 Plotting mode: Replace 🔽	
mouse L:	M: R:	
4(5) Delete	Status: Selecting outputs to be plotted T=27 C Simulator: spectre	

Po naciśnięciu przycisku wyboru symulacji otwiera się okno jak niżej, w którym należy wybrać rodzaj analizy np. analizy **transient,** i ustawić parametry symulacji.

🔳 Choosi	ing Analy	ses Vi	rtuoso® A	Analog Design >
Analysis	🖲 tran	🔾 dc	🔾 ac	🔾 noise
	🔾 xf	🔾 sens	🔾 dcmatch	🔾 stb
	🔾 pz	🔾 sp	🔾 envlp	🔾 pss
	🔾 pac	🔾 pstb	🔾 pnoise	🔾 pxf
	🔾 psp	🔾 qpss	🔾 qpac	🔾 qpnoise
	🔾 qpxf	🔾 qpsp	🔾 hb	🔾 hbac
	🔾 hbnois	e		
		Transient .	Analysis	
Stop Time	57			
Accuracu	- Dofaulta (a	rprocoft		
	orustius 🖂	modorato	liboral	
Conse	ervauve 📃	mouerate		
🗌 🗆 Transie	ent Noise			
🗌 🗆 Dynam	nic Paramete	r		
Enabled	_			Ontions
Enabled	<u> </u>			(Ophono)
	0	K Cano	el Defaul	ts Apply Help

Następnie należy wybrać sygnały, które mają być zobrazowane na wykresie. W tym celu wybierając

z menu **Outputs** \rightarrow **To Be Plotted** \rightarrow **Select On Schematic** lub przyciskiem można otworzyć stosowne okno dialogowe. Mamy teraz możliwość zaznaczenia na schemacie połączeń, których napięcia i prądy chcemy mieć przedstawione na wykresie. Klikając na połączenie (wire) wybieramy napięcie, klikając w punktach, które są końcami pinów (czerwone kwadraciki) wybieramy prądy.

Po zakończeniu wyboru sygnałów należy nacisnąć przycisk **Esc** i kliknąć na oknie **Analog Environment**. Ewentualnie **OK** w oknie **Select Outputs**. Teraz można uruchomić symulację \bigcirc . Wyświetli się okno z przebiegami uprzednio zaznaczonych napięć i prądów. Domyślnie są one wyświetlone na wspólnym wykresie. Aby je rozdzielić wybieramy **Graph** \rightarrow **Split current strip** lub odpowiedni przycisk z górnego paska.

Gdyby jednak symulacja nie uruchomiła się należy sprawdzić komunikaty programu w głównym oknie Virtuoso. Częstym problemem jest brak wykonania **Check and save** po modyfikacjach schematu od symulacji lub schematu symulowanych elementów. Nawet zmiana parametrów źródeł sygnałów wymaga sprawdzenia i ekstrakcji (tj. **Check and save**).

Po upewnieniu się, że układ działa poprawnie można przejść do projektowania jego topografii.