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Abstract

The paper presents a methods of using Green’s Functions as a useful tool for partial  
differential  equations  solving.  A  short  history  and  field  of  use  the  Green’s  function  is  
presented.  The  mathematical  foundation  of  solving  the  heat  equation  using  the  Green’s  
function is presented in detail. Implementation with use of the GNU Scientific Library with  
detailed algorithm and computation approximations is presented. Execution time is compared  
with the Matlab software. 

1. Introduction

The Green's functions, named after the English mathematician and physicist, George 
Green (1773-1841), are very powerful tools for obtaining solutions of transient and steady-
state linear heat  conduction problems. They can also be applied for  the solution of some 
convection problems and to many other phenomena which are described by the same type of 
equations.  These  problems  usually  involve  solution  of  diffusion-type  partial  differential 
equations. A Green's function (GF) is a basic solution of a specific differential equation with 
homogeneous boundary conditions. It is a building block from which many useful solutions 
may be constructed. For transient heat conduction, a GF describes the temperature distribution 
caused by an instantaneous, local energy pulse.

The GF method is related to other methods for solving heat conduction problems. The 
classic methods in heat conduction, including the method of separation of variables and the 
Laplace transform, are used to derive the GF. Approximate methods of finding GF developed 
by Haji-Sheikh [7] extends usability of the Green’s Function on a numerical side. 

Green functions are also a useful tool in condensed matter theory, where they allow 
the resolution of the diffusion equation and in quantum mechanics, where the Green function 
of the Hamiltonian is a key concept, with important links to the concept of density of states. 
The primary use of Green's functions in mathematics is to solve inhomogeneous boundary 
condition problems.  In physics,  Green's  functions are also usually used as propagators in 
Feynman  diagrams  (and  the  phrase  "Green's  function"  is  often  used  for  any  correlation 
function).  In  addition  to  solution  procedures,  the  GF  method  also  provides  greater 
understanding of the nature of diffusion processes, including heat conduction flow in porous 
media.

2. Thermal computation with the Green’s function 

A Green's function is an integral kernel that can be used to solve an inhomogeneous 
differential equation with boundary conditions. It serves roughly an analogous role in partial 
differential  equations  as  does  Fourier  analysis  in  the  solution  of  ordinary  differential 
equations.

The heat conduction equation, which presents the temperature in the specific point of 
the chip is described as [1]:
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Thermal conductivity is defined by k=ρcp κ , where c p is the heat capacity, and κ  
is the thermal diffusivity. The main goal of our computations is to compute the temperature in 
the specific point, in the three dimensional space (x,y,z), in the defined time moment t :

T=T  x,y,z,t   (2.2)

After transformations, the equation, which is used in this work is given as expression: 
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The dimension values are normalized by the chip thickness. The time value is normalized by

the expression 
cv c

k
.  The temperature distribution in an infinite one-dimensional, constant-

property body [7] which has an initial temperature distribution F(x), and volumetric energy 

generation g(x,t) (with units of W/m3), is described by:

∂
2T

∂ x 2


1
k

g  x,t =
1
α
∂T
∂ t

, −∞<x<∞ , t>0 (2.4)

T  x ,0 =F  x  (2.5)

The temperature T(x,t), the solution of (2.4) and (2.5), is called a Green's function solution 
equation.
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The  particular  form of  GF(.)  for  an  infinite  one-dimensional  body is  a  fundamental  heat 
conduction solution (Cannon [6]).
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Based on  the  Green  function  described for  infinite  one dimensional  solution  and 
using principles described above, we could easy derive result for the multi-dimensional case. 
Let’s  assume  existence  of  an  area  without  boundary  conditions.  A  Silicon  is  placed 
everywhere  in  the  three  dimensional  space (x,y,z)  and a rectangle  heat  source with sizes 
specified by coordinates (x1 ,x2), (y1 ,y2), (z1 ,z2). Let the arbitrary point X be placed in the 
heat source area described by coordinates (x’, y’, z’).

The temperature in an arbitrary point in the space is specified by a formula:
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The Z direction of the real heat source is normally greater than 0. In this work we 
assume, that the thickness of the heat source is much smaller than a thickness of the whole 
chip (z’ << c). This assumption leads to omitting integral of the z’ variable in the expression 
(2.8). Using the equation (2.7) which determines temperature for a single point, we are able to 
introduce a formula, which describes the temperature in a single point in a space caused by a 
square heat source:
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Farther the equation will be applied to numerical calculations. 

3. Using GNU Scientific Library for temperature computations

Equation  (2.9)  can  be  numerically  computed.  There  is  need  to  perform  triple 
integration for each computing point in the space. Considering computing power or modern 
informatics systems this is not a big issue. There are although simple methods for equation 
complexity  reduction.  Approximation  of  the  definite  Riemann  integrals  of  the  X  and  Y 
dimensions  using  error  function  leads  to  the  final  solution.  Numerical  computation  is 
performed  using  Gauss-Kronod  method  with  41-point  integration  rule.  For  specific 
integration ranges (fig. 1) we use two integral computing methods based on Gauss-Kronod 
integration. Algorithms are used from GSL toolkit [5]. 

The  first  algorithm (QAG)  is  an  adaptive  integration  procedure.  The  integration 
region is  divided into subintervals,  and on each iteration the  subinterval  with the  largest 
estimated error is bisected. The second algorithm (QAGS) combines adaptive bisection with 
the  Wynn  epsilon-algorithm  to  speed  up  the  integration  of  many  types  of  integrable 
singularities. This function applies the Gauss-Kronrod 21-point integration rule adaptively. 
The integrals for dimensions X and Y could be replaced by the appropriate error functions [2]. 
The basic formula for the error function is

erf  x =
2
π
∫
0

x

eu2

du (3.1)

Finally we got the equation, which is going to be implemented numerically:
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In order to compute the equation above and to minimize error introduced by the error 
function approximation the time integral (from t1 to t2) is divided and for each area error 
function is computed independently.  

Fig. 1. Computation time division

For each area expression (3.2) is computed. The error function variable t' is always 
equal to the centre of the currently computed time area Δt:
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The final result is the addition of results computed for all time areas:

T=∑
1

n
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It is a very simple computer operation.

4. Detailed computation algorithm

The computation method was based on the equation (3.2). Computation were made 
using numerical software. Calculations are executed during the heat module activity time (in 
this example from t1 to t2). This period is divided to many sub-periods in order to calculate 
error functions of the X and Y integrals.

Steps needed by the algorithm with short description of each stage are presented on 
the figure 2. Computation were made using numerical software. Calculations are executed 
during the heat module activity time (in this example from t1 to t2). This period is divided into 
many sub-periods in order to calculate error functions of the X and Y integrals. 
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Fig. 2.  Algorithm with explanation of each step

5. Algorithm time execution comparison

Presented  algorithm  was  implemented  in  application  used  for  chip  surface 
temperature  computation  with  optimization  of  maximal  temperature  based  on  scheduling 
algorithms for functional blocks of researched micro-processor [9]. There is a main focus of 
this article, to present usefulness of GNU Scientific library and to compare execution time 
with popular scientific software. 

The test element, is a chip of the size of each side equal to 3mm. Chip thickness is 
default to 0.3 mm. Heat source is located centrally on the chip, with the dimesion 2mm x 
2mm. The activity time is set to 2 seconds. 

Fig. 3. Test element
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Temperature was measured in two points, one placed centrally in the heat center, and 
second outside the heat source. In the same coordinates relative to the center of the chip. The 
temperature was measured in 10 steps, with 1 second interval after the chip activity time. 
Computation time was measured with the 10 us accuracy (in case of application compute 
time, time was rounded to 10 us). Computation was performed 5 times and the mean values 
were compared. Results are presented in the table 1.

Matlab 6.5 GNU Scientific Library

Point P1 avg. 0,55 [s] 0,02 [s]

Point P2 avg. 0.69 [s] 0.03 [s]

Table.1. Test results

Computer used in computations: Pentium III 1,13 GHz, 384MB RAM. Application 
used  with  comparison:  Matlab  6.5.0.180913a  Release  13  (GNU/Linux  Version)  and 
application using Gnu Scientific Library version 1.6 (Ubuntu Linux libgsl-1.6-2). For Matlab, 
standard  triple  integral   function  was  used  –  triplequad  –  with  default  option  values 
(tolerance = 1e-6 and default quadrature function (QUAD).  

Conclusions

The solution,  considering  a  heat  equation  as  an  partial  differential  equation,  was 
presented based on the Green’s function method. Methods of integral approximation with 
detailed  algorithm  was  developed  and  implemented  on  the  GNU/Linux  platform.  The 
comparison of GNU Scientific  Library and the approach of compilation using high level 
languages with the popular mathematical software, gives good results. Computation time on 
the same machine was much faster.  By usage this  library, user  is  not  bound only to one 
operating system environment or proprietary software solutions. 

Bibliography

[1] Kos, Andrzej, De Mey, Gilbert “Thermal Modelling and optimization of power microcircuits”, Electrochemical 

Publications, Bristol, England, 1997

[2]  Abramowitz,  Milton  and  Stegun,  Irene  A.  (Eds.)  “Handbook  of  Mathematical  Functions  with  Formulas, 

Graphs, and Mathematical Tables”; 9th printing; New York: Dover, 1972

[3] Stevens, W. Richard “Advanced Programming in the Unix Environment” , Addison Wesley Longman, Reading, 

MA 1993

[4] William H. Press, Saul A. Teukolsky , William T. Vetterling , Brian P. Flannery “Numerical Recipes in C. The 

Art of Scientific Computing. Second Edition”, Cambridge University Press (1988-1992).

[5] Galassi, Mark; Davies, Jim; Theiler, James; Gough, Brian; Jungman, Gerard; Booth, Michael; Rossi, Fabrice 

“GNU Scientific Library Reference Manual Edition 1.5”, for GSL Version 1.5; 19 July 2004 

[6]  Cannon,  John  Rozier,  “The  one-dimensional  heat  equation”,  Encyclopedia  of  Mathematics  and  its 

Applications, 23. Addison-Wesley Publishing Company, 1984

[7]  Beck  J.V.,  “Heat  Conduction  Using  Green's  Function”,  (Series  in  Computational  Methods  and  Physical 

Processes in Mechanics and Thermal Sciences), Taylor & Francis, 1992


	Using GNU Scientific Library 
	for Temperature Computation in VLSI Systems 
	Abstract

